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Given a query image patch, find similar images
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 Collect billions of images
 Determine feature vector for each image (4k dim)
 Given a query Q, find nearest neighbors FAST

Distance

Image B Feature Vector

Image Q Feature Vector

Similarity (Q,B)

0 0 1 1 0 1 0 1 0 0 0 1 1 0 1 00 0 …

1 0 1 0 0 0 0 1 1 1 0 0 1 0 0 00 1 …

…

…
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 Many problems can be expressed as 
finding “similar” sets:
▪ Find near-neighbors in high-dimensional space

 Examples:
▪ Pages with similar words

▪ For duplicate detection, classification by topic

▪ Customers who purchased similar products
▪ Products with similar customer sets

▪ Images with similar features
▪ Image completion

▪ Recommendations and search
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 Given: High dimensional data points 𝒙𝟏, 𝒙𝟐, …

▪ For example: Image is a long vector of pixel colors

 And some distance function 𝒅(𝒙𝟏, 𝒙𝟐)

▪ which quantifies the “distance” between 𝒙𝟏 and 𝒙𝟐

 Goal: Given 𝒒, find data points 𝒙𝒋 that are 

within distance threshold 𝒅 𝒒, 𝒙𝒋 ≤ 𝒔

 Note: Naïve solution would take 𝑶 𝑵

where 𝑵 is the number of data points

 MAGIC: This can be done in 𝑶 𝟏 !! How??
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 Given: High dimensional data points 𝒙𝟏, 𝒙𝟐, …

▪ For example: Image is a long vector of pixel colors

 And some distance function 𝒅(𝒙𝟏, 𝒙𝟐)

▪ which quantifies the “distance” between 𝒙𝟏 and 𝒙𝟐

 Goal: Find all pairs of data points (𝒙𝒊, 𝒙𝒋) that 

are within distance threshold 𝒅 𝒙𝒊, 𝒙𝒋 ≤ 𝒔

 Note: Naïve solution would take 𝑶 𝑵𝟐

where 𝑵 is the number of data points

 MAGIC: This can be done in 𝑶 𝑵 !! How??
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 LSH is really a family of related techniques
 In general, one throws items into buckets using 

several different “hash functions”.
 You examine only those pairs of items that share 

a bucket for at least one of these hashings.

 Upside: Designed correctly, only a small fraction 
of points are ever examined

 Downside: There are false negatives – there 
might be similar items that get missed
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 Suppose we need to find near-duplicate 
documents among 𝑵 = 𝟏 million documents
▪ Naïvely, we would have to compute pairwise 

similarities for every pair of docs
▪ 𝑵(𝑵 − 𝟏)/𝟐 ≈ 5*1011 comparisons

▪ At 105 secs/day and 106 comparisons/sec, 
it would take 5 days

▪ For 𝑵 = 𝟏𝟎 million, it takes more than a year…

 Similarly, we have a dataset of 10B documents, 
quickly find the document that is most similar to 
query document 𝒒.
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1. Shingling: Converts a document into a set 
representation (Boolean vector)

2. Min-Hashing: Convert large sets to short 
signatures, while preserving similarity

3. Locality-Sensitive Hashing: Focus on 
pairs of signatures likely to be from 
similar documents

▪ Candidate pairs!
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Step 1: Shingling:
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Step 1: Shingling: Converts a document into a set
 A k-shingle (or k-gram) for a document is a 

sequence of k tokens that appears in the doc

▪ Tokens can be characters, words or something else, 
depending on the application

▪ Assume tokens = characters for examples

 To compress long shingles, we can hash them to 
(say) 4 bytes

 Represent a document by the set of hash 
values of its k-shingles
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 Example: k=2; document D1= abcab

Set of 2-shingles: S(D1) = {ab, bc, ca}
Hash the shingles: h(D1) = {1, 5, 7}

 k = 8, 9, or 10 is often used in practice

 Benefits of shingles:

▪ Documents that are intuitively similar will have 
many shingles in common

▪ Changing a word only affects k-shingles within 
distance k-1 from the word
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 Document 𝑫𝒊 is represented by a set of its 
k-shingles 𝑪𝒊 = 𝑺(𝑫𝒊)

 A natural similarity measure is the 
Jaccard similarity:

sim(D1, D2) = |C1C2|/|C1C2|

Jaccard distance: d(C1, C2) = 1 - |C1C2|/|C1C2|
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Encode sets using 0/1 (bit, Boolean) vectors 
 Rows = elements (shingles)
 Columns = sets (documents)

▪ 1 in row e and column s if and 
only if e is a member of s

▪ Column similarity is the Jaccard
similarity of the corresponding 
sets (rows with value 1)

▪ Typical matrix is sparse!
 Each document is a column:

▪ Example: sim(C1 ,C2) = ?
▪ Size of intersection = 3; size of union = 6, 

Jaccard similarity (not distance) = 3/6

▪ d(C1,C2) = 1 – (Jaccard similarity) = 3/6
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 So far:
▪ Documents → Sets of shingles

▪ Represent sets as Boolean vectors in a matrix

 Next goal: Find similar columns while 
computing small signatures
▪ Similarity of columns == similarity of signatures

 Warnings:
▪ Comparing all pairs takes too much time: Job for LSH

▪ These methods can produce false negatives, and even false 
positives (if the optional check is not made)
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Step 2: Min-Hashing: Convert large sets to 
short signatures, while preserving similarity
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 Key idea: “hash” each column C to a small 
signature h(C), such that:
▪ sim(C1, C2) is the same as the “similarity” of 

signatures h(C1) and h(C2)

 Goal: Find a hash function h(·) such that:
▪ If sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

▪ If sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

 Idea: Hash docs into buckets. Expect that 
“most” pairs of near duplicate docs hash into 
the same bucket!
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 Goal: Find a hash function h(·) such that:

▪ if sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

▪ if sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

 Clearly, the hash function depends on 
the similarity metric:

▪ Not all similarity metrics have a suitable 
hash function

 There is a suitable hash function for 
the Jaccard similarity: It is called Min-Hashing
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 Permute the rows of the Boolean matrix using 
some permutation 
▪ Thought experiment – not real

 Define minhash function for this permutation , 
h(C) = the number of the first (in the permuted 
order) row in which column C has value 1. 
▪ Denoted this as: h (C) = min (C)

 Apply, to all columns, several randomly chosen 
permutations  to create a signature for each 
column

 Result is a signature matrix: Columns = sets, 
Rows = minhash values for each permutation 
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 Students sometimes ask whether the minhash
value should be the original number of the 
row, or the number in the permuted order (as 
we did in our example).

 Answer: It doesn’t matter.

▪ We only need to be consistent and assure that two 
columns get the same value if and only if their first 
1’s in the permuted order are in the same row.
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 Choose a random permutation 
 Claim: Pr[h(C1) = h(C2)] = sim(C1, C2) 
 Why?

▪ Let X be a doc (set of shingles), z X is a shingle

▪ Then: Pr[(z) = min((X))] = 1/|X|

▪ It is equally likely that any z X is mapped to the min element

▪ Now, let y be s.t. (y) = min((C1C2))

▪ Then either: (y) = min((C1))  if y  C1 , or

(y) = min((C2))  if y  C2

▪ So the prob. that both are true is the prob. y  C1 C2

▪ Pr[min((C1))=min((C2))]=|C1C2|/|C1C2|= sim(C1, C2) 
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 Given cols C1 and C2, rows are classified as:
C1 C2

A 1 1

B 1 0

C 0 1

D 0 0

▪ Define: a = # rows of type A, etc.
 Note: sim(C1, C2) = a/(a +b +c)
 Then: Pr[h(C1) = h(C2)] = Sim(C1, C2) 

▪ Look down the permuted cols C1 and C2 until we see a 1

▪ If it’s a type-A row, then h(C1) = h(C2)
If a type-B or type-C row, then not
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 We know: Pr[h(C1) = h(C2)] = sim(C1, C2)
 Now generalize to multiple hash functions

 The similarity of two signatures is the 
fraction of the hash functions in which they 
agree

 Thus, the expected similarity of two 
signatures equals the Jaccard similarity of the 
columns or sets that the signatures represent
▪ And the longer the signatures, the smaller will be 

the expected error
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 Permuting rows even once is prohibitive
 Row hashing!

▪ Pick K = 100 hash functions hi

▪ Ordering under hi gives a random permutation  of rows!

 One-pass implementation

▪ For each column c and hash-func. hi keep a “slot” M(i, c) 
for the min-hash value of column c and hash-func i

▪ Initialize all M(i, c) = 

▪ Scan rows looking for 1s

▪ Suppose row j has 1 in column c

▪ Then for each hi :

▪ If hi(j) < M(i, c), then M(i, c)  hi(j)
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where:

a,b … random integers

p … prime number (p > N)



Step 3: Locality Sensitive Hashing:
Focus on pairs of signatures likely to be from 
similar documents
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 Goal: Find documents with Jaccard similarity at 
least s (for some similarity threshold, e.g., s=0.8)

 LSH – General idea: Use a hash function that 
tells whether x and y is a candidate pair: a pair 
of elements whose similarity must be evaluated

 For Min-Hash matrices: 

▪ Hash columns of signature matrix M to many buckets

▪ Each pair of documents that hashes into the 
same bucket is a candidate pair
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 Pick a similarity threshold s (0 < s < 1)

 Columns x and y of M are a candidate pair if 
their signatures agree on at least fraction s of 
their rows: 
M (i, x) = M (i, y) for at least frac. s values of i

▪ We expect documents x and y to have the same 
(Jaccard) similarity as their signatures
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 Big idea: Hash columns of 
signature matrix M several times

 Arrange that (only) similar columns are 
likely to hash to the same bucket, with 
high probability

 Candidate pairs are those that hash to the 
same bucket
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 Divide matrix M into b bands of r rows

 For each band, hash its portion of each 
column to a hash table with k buckets

▪ Make k as large as possible

 Candidate column pairs are those that hash 
to the same bucket for ≥ 1 bands

 Tune b and r to catch most similar pairs, 
but few non-similar pairs
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Matrix M

r rows b bands

Buckets
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 There are enough buckets that columns are 
unlikely to hash to the same bucket unless 
they are identical in a particular band.

 Hereafter, we assume that “same bucket” 
means “identical in that band”.

 Assumption needed only to simplify analysis, 
not for correctness of algorithm.
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Assume the following case:
 Suppose 100,000 columns of M (100k docs)
 Signatures of length 100, stored as integers 

(rows)
 Therefore, signatures take 40MB
 Goal: Find pairs of documents that 

are at least s = 0.8 similar
 Choose b = 20 bands of r = 5 integers/band
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 Find pairs of  s=0.8 similarity, set b=20, r=5
 Assume: sim(C1, C2) = 0.8

▪ Since sim(C1, C2)  s, we want C1, C2 to be a candidate 
pair: We want them to hash to at least 1 common bucket
(at least one band is identical)

 Probability C1, C2 identical in one particular 
band: (0.8)5 = 0.328

 Probability C1, C2 are not similar in all 20 bands: 
(1-0.328)20 = 0.00035 
▪ i.e., about 1/3000th of the 80%-similar column pairs 

are false negatives (we miss them)

▪ We would find 99.965% pairs of truly similar documents

4/6/2021 43Jure Leskovec, Stanford CS246: Mining Massive Datasets

1212

1412

2121



 Find pairs of  s=0.8 similarity, set b=20, r=5
 Assume: sim(C1, C2) = 0.3

▪ Since sim(C1, C2) < s we want C1, C2 to hash to 
NO common buckets (all bands should be different)

 Probability C1, C2 identical in one particular 
band: (0.3)5 = 0.00243

 Probability C1, C2 identical in at least 1 of 20 
bands: 1 - (1 - 0.00243)20 = 0.0474
▪ In other words, approximately 4.74% pairs of docs 

with similarity 0.3 end up becoming candidate pairs
▪ They are false positives since we will have to examine them 

(they are candidate pairs) but then it will turn out their 
similarity is below threshold s
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 Pick:
▪ The number of Min-Hashes (rows of M) 

▪ The number of bands b, and 

▪ The number of rows r per band
to balance false positives/negatives
▪ Note, M=b*r

 Example: If we had only 10 bands of 10 
rows, the number of false positives would 
go down, but the number of false negatives 
would go up
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 Say columns C1 and C2 have similarity t
 Pick any band (r rows)

▪ Prob. that all rows in band equal = tr

▪ Prob. that some row in band unequal = 1 - tr

 Prob. that no band identical  = (1 - tr)b

 Prob. that at least 1 band identical =                  
1 - (1 - tr)b
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 Similarity threshold s
 Prob. that at least 1 band is identical:
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s 1-(1-sr)b
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0.7 0.975

0.8 0.9996



 Picking r and b to get the best S-curve

▪ 50 hash-functions (r=5, b=10)
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 Tune M, b, r to get almost all pairs with 
similar signatures, but eliminate most pairs 
that do not have similar signatures

 Check in main memory that candidate pairs
really do have similar signatures

 Optional: In another pass through data, 
check that the remaining candidate pairs 
really represent similar documents
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 Shingling: Convert documents to set representation

▪ We used hashing to assign each shingle an ID

 Min-Hashing: Convert large sets to short signatures, 
while preserving similarity

▪ We used similarity preserving hashing to generate 
signatures with property Pr[h(C1) = h(C2)] = sim(C1, C2)

▪ We used hashing to get around generating random 
permutations

 Locality-Sensitive Hashing: Focus on pairs of 
signatures likely to be from similar documents

▪ We used hashing to find candidate pairs of similarity  s
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